

Netavis Observer 5.0.1

SNAP XML R1.0
Simple Netavis Access Protocol

Netavis SNAP XML R1.0 for Observer 5.0.1

2

Netavis SNAP XML R1.0 for Observer 5.0.1
Valid from Observer 5.0.1
Published in June 2019

The software described in this manual is licensed under the terms of the Netavis end user license
agreement and may only be used in accordance with these terms.

Copyright
Copyright © 2003-2019 Netavis Software GmbH. All rights reserved.
Netavis is a trademark of Netavis Software GmbH.

Netavis Software GmbH
Handelskai 388, Top 221
A-1020 Vienna
Austria

Tel. +43 1 503 1722 - 0
Fax. +43 1 503 1722 - 400
info@netavis.net
www.netavis.net

mailto:info@xperts.at
http://www.xperts.at/

 SNAP XML R1.0

3

Contents

1. Introduction ... 4

2. Important SNAP concepts .. 4

2.1 SNAP Sessions and security .. 4
2.2 SNAP Channels .. 4
2.3 Using SNAP Sessions and Channels ... 5
2.4 SNAP APIs for Java and .NET .. 6

3. Transport of SNAP Requests and Responses ... 7

3.1 HTTP transport format of a SNAP Request .. 7
3.2 HTTP transport format of a SNAP Response ... 7

4. SNAP Requests and Responses ... 9

4.1 OpenSession ... 11
4.2 CloseSession .. 12
4.3 LiveSignal .. 13
4.4 OpenChannel .. 14
4.5 ControlChannel ... 15
4.6 ReadChannel .. 18
4.7 CloseChannel .. 24
4.8 PropagateEvent ... 25
4.9 PerformAction .. 26
4.10 SetArchiveProtection ... 27
4.11 GetVideoArchiveMap .. 28
4.12 VideoStreamAnnotation .. 30
4.13 ShowCameraInViewport ... 31
4.14 ShowViewOfWindow ... 32
4.15 StartSmartGuard ... 33
4.16 StopSmardGuard .. 34
4.17 GetEntityTree .. 35
4.18 GetIODeviceList .. 38
4.19 GetPTZPositionList ... 39
4.20 GetPTZRouteList ... 40
4.21 GetPTZRouteDefinition ... 41
4.22 LockPTZResource ... 42
4.23 RefreshPTZResource.. 43
4.24 ReleasePTZResource ... 44
4.25 StartPTZRoute .. 45
4.26 StopPTZRoute ... 46
4.27 SetPTZPosition ... 47
4.28 PTZCenterClick ... 48
4.29 ContinuousPTZ ... 49
4.30 MovePTZRelative .. 50
4.31 GetLicensePlateLists... 51
4.32 SetLicensePlateLists ... 52

Appendix A – List of events ... 53

Appendix B – List of error codes ... 55

Appendix C – List of available Actions ... 56

Netavis SNAP XML R1.0 for Observer 5.0.1

4

1. Introduction

This document describes the Simple Netavis Access Protocol (SNAP) that allows bidirectional
communication between a Netavis Observer server and a client application. SNAP is an XML-
formatted interface using HTTP as transport layer. The first part of the document describes the most
important concepts of the interface, which is followed by a description of all SNAP requests and
responses.

Please note: For the rest of this document we use the term Netavis to refer to Netavis Observer.

To create a program that uses SNAP with either Java or .NET you need to use the available SNAP
APIs (please refer to 2.4 SNAP APIs for Java and .NET).

The following basic functions are available with this release of SNAP:

• Create a SNAP session with user authentication

• Access the camera topology

• Access live streams and archive recordings of cameras

• Access information of cameras, camera groups, customers, host, users, user groups, and
other basic data

• Receive notification on Observer events

• Query Observer events in the EMS database

• Propagate external events to the Observer EMS

• Start Observer actions

• Annotate video streams with text

2. Important SNAP concepts

The SNAP interface provides bidirectional multi-channel communication between a Netavis Observer
server (Server) and a client application using the SNAP interface (Client). After creating a SNAP
session (Session), the Client can send SNAP Requests to the Server, which are answered by the
Server with SNAP Responses. The Server can also notify the Client on Netavis events, which the
Client is registered for (Event).

2.1 SNAP Sessions and security
Before you can access any Netavis data or functionality via SNAP, the Client has to create a new
SNAP Session. A Session has to be created with the appropriate authentication – valid user name and
corresponding password (see OpenSession below). The Netavis user’s privileges and access rights
are then granted to the Session. The Session is alive until it is closed by the Client (see request
CloseSession below). The Session will be invalidated by the Server automatically if the Client does not
send any request within a period of time. Each Session is identified by a SessionID, which is an
integer number sent by the Server to the Client as response to the OpenSession request. Due to
security reasons, the Server accepts requests (identified by a SessionID) only from the IP address that
issued the OpenSession request.

2.2 SNAP Channels
There are two ways how the Server sends information to the Client. The first way is to send
response(s) as reply to the Client’s HTTP requests. This is the normal request/response
communication as we know it for HTTP communication.

 SNAP XML R1.0

5

The second way is to use a SNAP channel (Channel). The Channel is the way of pushing large
amounts of data (video streams, audio data and events) from the Server to the Client.
A Channel is nothing else but an HTTP request initiated by the Client and responded by the Server
only if there are data to be transmitted. This means that the HTTP request for reading the channel
(see ReadChannel below) will be blocked by the Server until there is some data to be sent to the
Client (e.g. live or archived video frames, or events). Thus, the SNAP request ReadChannel will not
return a response immediately in every case. The ReadChannel request may be blocked for several
seconds (see Timeout parameter of the OpenChannel request). Therefore, it is recommended to read
the Channel in a separate thread of the Client application, which does not block the application’s main
event loop. On the other hand, the Server will finalize the ReadChannel request in any case after the
specified timeout. This means that the Server terminates the ReadChannel request independent of
data availability on the Server. The Client has to initiate the next ReadChannel request, right after
terminating the previous ReadChannel request. If the Client does not issue another request in time
then the Server invalidates the Session. Every further request referring to the invalid SessionID will be
rejected by the Server.

The Client can open any number of Channels. One Channel can be used to transfer video stream of
one single camera, but it can also be used for transferring multiple live or archived streams of different
cameras, and to transfer Events as well. Thus, in many cases one single Channel is enough to
transfer video streams of many cameras, and Events from the Server to the Client.

2.3 Using SNAP Sessions and Channels
The Client application has to start the communication by creating a new Session, sending an
<OpenSession> request. The server will answer immediately by sending a new SessionID back. This
SessionID has to be used in all further requests. Then the Client must open at least one Channel by
sending the Request <OpenChannel>. The server will respond with a ChannelID, which is unique to
this session. This ChannelID has to be used in all further operations on this Channel. Now, the client
may issue one or more <ControlChannel> requests, which instructs the server to start filling data into
the Channel. Then, the Client may start a thread (Channel Reader Thread) which sends
<ReadChannel> requests to the Server and processes the response. As response to each
<ReadChannel> request, the Client receives a multipart http response. The content of the multipart
stream depends on previous <ControlChannel> request of the client. If the server terminates the
multipart response (End of file received), the Channel Reader Thread has to send a new
<ReadChannel> request, as long as the Channel is still open. In parallel to the Channel Reader
Thread, the Client may send any <ControlChannel> requests to the server. It may add or remove live
or archived streams of cameras, start/stop the live stream of all cameras with a single
<ControlChannel> request, or register the client for Event notification, or even close the Channel by
sending <CloseChannel>. After closing the last Channel, the Session has to be closed as well.
Otherwise, the server will invalidate the Session after a timeout. It is the Client-implementor’s decision
how many parallel Channels are used in the Client application. The following figure shows the process
of Session and Channel management between Client and Server:

Netavis SNAP XML R1.0 for Observer 5.0.1

6

2.4 SNAP APIs for Java and .NET
The SNAP API is available for both Java and .NET and consists of the following parts:

• SNAP API documentation online

• sample source code and executables

• SNAP API libraries to be incorporated in your application

You can download the APIs for Java and .NET from your Netavis Observer server by selecting Start
Customizer from the main web page. Login as admin user and click on Download configuration
files.

Installing the SNAP API for .NET

Download snap.Net20API.zip (for .NET 2.0 or greater). When you open the ZIP file, you find an
executable setup program. Start the setup program to install the SNAP API files on your computer.

The installation contains offline documentation for SNAP .NET and two sample applications, one with
a Windows GUI and the other one as console application. Both samples are available as binaries and
also as C# source code for Visual Studio.

The library snap.dll is available for linking to your programs.

Installing the SNAP API for Java

Download snapJavaAPI.zip. When you open the ZIP file, you find documentation, libraries and Java
source code. Please open the README.txt for further information.

If you use Java then make sure to use java compiler version 1.8 or greater and include the snap.jar in
your classpath. The package also contains javadoc of the library and a tester application to be familiar
with the API.

The two platform implementations can be different and some functions may be implemented only in
java, or in .NET. From version to version, we are working hard on the synchronization of these
libraries, but differences can occur. That’s why we suggest to make sure before you use the API if you
have the latest version of SNAP API to your platform.

 Client Server

OpenChannel

ChannelID

ControlChannel

CommandStatus

ReadChannel

Video Frames, Events

ControlChannel,… CloseChannel

CommandStatus

ReadChannel

Video Frames, Events

V
id

e
o
 F

ra
m

e
 a

n
d
 E

v
e
n

t

R
e
a
d

e
r T

h
re

a
d

…

OpenSession for user/passwd

SessionID

 SNAP XML R1.0

7

3. Transport of SNAP Requests and Responses

Each SNAP Request is an HTTP POST request containing one XML-formatted SNAP Request.
Specific SNAP requests and responses are described in the next chapter.

3.1 HTTP transport format of a SNAP Request
The Netavis Observer server is listening on standard HTTP Listen Port (default: 80). The Client has to
send POST request to that port as follows (the <bold-italic> parts of examples below are
placeholders for actual SNAP data):

POST /arms/servlet/BrowserServlet HTTP/1.0\r\n

Connection: Keep-Alive\r\n

Cache-Control: No-Cache\r\n

Content-Type: text/xml\r\n

Content-Length: <Length-of-SNAP-Request-in-bytes>\r\n

\r\n

<SNAP-Request>

3.2 HTTP transport format of a SNAP Response
The Server responds to each SNAP Request with an XML content type document, except the Request
ReadChannel, where the content type is multipart. In case of a multipart response, the following
different content types are valid in this release of SNAP:

1. text/xml – The content is an XML format SNAP Response

2. image/jpeg - The content is a JPEG frame

3. video/mpeg – The content is an MPEG image frame

4. video/mxpeg – The content is an MxPEG video frame

5. video/h264 – The content is a H.264 video frame

6. video/mpeg4_gop – The content is an Observer GOP (group of pictures)

7. audio/PCMU – The content is a PCM µlaw audio frame

8. audio/PCMA – The content is a PCM alaw audio frame

9. audio/G726-16 – The content is a G726 16Kbps audio frame

10. audio/G726-24 – The content is a G726 24Kbps audio frame

11. audio/G726-32 – The content is a G726 32Kbps audio frame

12. audio/L16 – The content is an L16 audio frame

13. audio/mpeg4-generic – The content is an AAC audio frame

Each frame and the GOP part are preceded by a text/xml part with content SNAP-Response
FrameHeader. Please read description of the SNAP-request ReadChannel for a detailed description of
the response FrameHeader.

XML content type response

This is the response to requests other than ReadChannel

Netavis SNAP XML R1.0 for Observer 5.0.1

8

HTTP/1.1 200 OK\r\n

Content-Type: text/xml\r\n

Content-Length: <Length-of-SNAP-Response-in-bytes>\r\n

\r\n

<SNAP-Response>

Multipart content type response

This is the structure of the response to the request ReadChannel.

HTTP/1.1 200 OK\r\n

Content-Type: multipart/x-mixed-replace;boundary=myboundary\r\n

--myboundary\r\n

Content-Type: text/xml\r\n

Content-Length: <Length of SNAP Response>\r\n

\r\n

<SNAP-Response>

--myboundary\r\n

Content-Type: <either text/xml (SNAP Response) or image/jpeg (JPEG Frame)>\r\n

Content-Length: <Length of SNAP Response or JPEG Frame in-bytes>\r\n

\r\n

<SNAP Response or JPEG Frame>

--myboundary\r\n

Content-Type: <either text/xml (SNAP Response) or image/jpeg (JPEG Frame)>\r\n

Content-Length: <Length of SNAP Response or JPEG Frame in-bytes>\r\n

\r\n

<SNAP Response or JPEG Frame>

 .

 .

 .

 SNAP XML R1.0

9

4. SNAP Requests and Responses

This part of the document describes the format of all SNAP requests and responses. Each request is a
HTTP POST request containing one XML formatted SNAP Command. The syntax and semantic of the
XML formatted requests and responses is described by XML Schema definition (refer to

http://www.w3.org/2001/XMLSchema).

The following requests are implemented in this SNAP release:

• OpenSession – Open a SNAP Session

• CloseSession – Close a SNAP Session

• LiveSignal – Send a live signal to the server

• OpenChannel – Open a SNAP Channel

• ControlChannel – Specify data which has to be transmitted in the Channel

• ReadChannel – Read data from Channel

• CloseChannel – Close a SNAP Channel

• PropagateEvent – Send an event to Netavis (in order to be processed by the EMS)

• PerformAction – Perform an action in Netavis

• SetArchiveProtection – Protect or unprotect archive records

• GetVideoArchiveMap – Get video archive map of a camera for a specified time period

• VideoStreamAnnotation – Annotate video streams with text

• ShowCameraInViewport – This request brings up a view panel in the client and places a
camera in raw/column position.

• ShowViewOfWindow – This request brings up a view panel in the client.

• StartSmartGuard – This request starts the shuffling of a group of view panels in the client.

• StopSmartGuard – This request stops the shuffling of a group of view panels in the client.

• GetEntityTree – Get camera and group topology

• GetIODeviceList – Get the list of IO devices

• GetPTZPositionList – Get the list of defined PTZ positions for a camera

• GetPTZRouteList – Get the list of defined PTZ routes for a camera

• GetPTZRouteDefinition – Get the definition of the selected camera’s PTZ route

• LockPTZResource – Lock the PTZ resource of a camera

• RefreshPTZResource – Keep locking on a PTZ resource

• ReleasePTZResource – Release the lock of a PTZ resource

• StartPTZRoute – Start a predefined PTZ route

• StopPTZRoute – Stop the predefined PTZ route

• SetPTZPosition –Direct the PTZ head to a preset position

• PTZCenterClick – Center the PTZ head on the clicked position

• ContinuousPTZ – Continuously move the PTZ head into a given direction with a given speed

http://www.w3.org/2001/XMLSchema

Netavis SNAP XML R1.0 for Observer 5.0.1

10

• MovePTZRelative – Move the PTZ head in the given direction with given amount, relative to
its current position

The rest of this chapter describes all SNAP requests and the corresponding responses. Schema
descriptions below do not contain the most external XML document element <SNAP>. Some
elements in the XML Schema definitions below do appear just as a reference. These references
are not resolved in this chapter. The complete schema definition file SNAP.xsd can be accessed
on any Netavis Observer server. Please follow the link Start Customizer on the main Netavis
Observer web page, enter administrator name (usually “admin”) and password and click on
Download configuration files. Here click on the link SNAP.xsd.

Some text below refers to diverse schema elements in form of <ElementName> or AttributeName.
The definition of these elements can be found in the schema definition file SNAP.xsd. Some
important terms are highlighted as term and explained later in the text.

 SNAP XML R1.0

11

4.1 OpenSession

Description: Open a new SNAP Session. This must be the first request in every SNAP
communication. If the Netavis server is licensed to support SNAP and if there are any
free login accounts available for SNAP then this request will open a new SNAP
session by returning a new SessionID. Otherwise the session request will be rejected
and the error condition will be returned.
Note: Only the user “guest” is allowed when you use the demo license.

Parameters: User - Netavis user

 Passwd – MD5 encoded password

 SNAPVersion – Version number of SNAP used in this session. (“V1” is default)

Response: <NewSession> or <ExecutionStatus> with attribute ReturnCode != 0 on error. See the
schema definition SNAP.xsd for a schema of <ExecutionStatus> and Appendix B –
List of error codes.

XML Example for the request OpenSession

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <OpenSession User=”peter” Passwd=”084e0343a0486ff05530df6c705c8bb4” SNAPVersion=”V1”/>

</SNAP>

XML Example for the response NewSession

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <NewSession SessionID=”8325”/>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

12

4.2 CloseSession

Description: Close a SNAP Session. Closing a session will close all open channels associated with
this session and free all resources allocated for this session by the server.

Parameters: SessionID – Returned by OpenSession

Response: <ExecutionStatus>. See Appendix B – List of error codes for error codes and texts.

XML Example for the request CloseSession

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <CloseSession SessionID=”8325”/>

</SNAP>

XML Example for the response ExecutionStatus

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ExecutionStatus ReturnCode=”0”/>

</SNAP>

 SNAP XML R1.0

13

4.3 LiveSignal

Description: This request simply shows the server that the client, which opened the session is still
alive. This request has to be sent every 15 seconds to the server. Otherwise, the
server will close the session and consider the client connection as dead.

Note: You need this request only if there is no opened channel in your session! Use of
this command is not necessary if the client maintains at least one open channel
(sending periodic ReadChannel requests)

Parameters: SessionID – Returned by OpenSession

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<LiveSignal SessionID =”3456”/ >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

14

4.4 OpenChannel

Description: Open a new SNAP Channel. See Important SNAP concepts for more information on
SNAP channels.

Parameters: SessionID – Returned by OpenSession

TimeLimit – Timeout after which the server terminates a ReadChannel request in any
case (seconds).

DataLimit – Size of transferred data in the channel after which the server terminates a
ReadChannel request in any case (KBytes). The value 1 cause termination of
ReadChannel request frame by frame.

FrameBased – Optional parameter relevant only for archive recording queries (default
is false). If true, the MPEG4 and H.264 streams will be sliced by the server into
standard MPEG4 or H.264 frames instead of the Observer-specific GOP (group of
pictures) format. If false, then the Observer-specific GOP format is used.

Response: <NewChannel> on success or <ExecutionStatus> on error

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 < OpenChannel SessionID =”3456” TimeLimit =”60”/>

</SNAP>

XML Example for the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <NewChannel ChannelID=”1”/>

</ SNAP>

 SNAP XML R1.0

15

4.5 ControlChannel

Description: Defines what the channel does and what is transferred in the channel. You can control
several live streams, archive streams, event streams with one single ControlChannel
request. The following elements are:

• <StartLiveVideoStream> Start live video stream of a camera.

• <StartArchiveVideoStream> Start archive video stream of a camera.

• <StartLiveEventStream> Start sending live events.

• <StartArchiveEventStream> Start sending archived events.

• <StopStream> Stop (cancel) any stream.

• <PauseAllLiveVideoStream> Pause all live video streams.

• <ResumeAllLiveVideoStream> Resume all live video streams after a pause.

• <RegisterForDataChangeNotification> Resister channel for data change
notification.

• <StartLiveViewStream> Start sending “stitched” views of multiple camera
images in one single stream.

• <StartTimedArchiveVideoStream> Start an archive video stream of a
camera with server-side inter-frame timing. After issuing the command the
server prepares the stream and puts it into pause mode, so the first call of
the client application should be a resume. Later the stream can be paused,
resumed or closed.

Note: The XML schema description of the request below does not contain all details.
Please look at the full schema SNAP.xsd for all details.

IMPORTANT NOTE: All stream requests contain a StreamID parameter. This
parameter is a unique ID of the stream, which is assigned to a stream by the client
application. StreamID identifies the stream for which a data item (Frame or Event) is
pushed into the channel (attribute StreamID of <FrameHeader> or <Event>).
StreamID is also used when a stream should be stopped.

IMPORTANT NOTE: In the <StartArchiveEventStream> command please do not
request for more than 50000 records! For a listing of valid event names for filtering
please refer to Appendix A.

Parameters: SessionID – Returned by OpenSession

 ChannelID – Returned by OpenChannel

Response: ExecutionStatus

Netavis SNAP XML R1.0 for Observer 5.0.1

16

XML Example for the request (start 4 live streams from 2 different cameras)

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ControlChannel SessionID=”8325” ChannelID=”1”>

 <StartLiveVideoStream StreamID=”1” EntityID=”2” Size=”Large”/>

 <StartLiveVideoStream StreamID=”2” EntityID=”4”/>

 <StartLiveVideoStream StreamID=”3” EntityID=”2” Size=”Small” Quality=”High” Fps=”10”/>

 <StartLiveVideoStream StreamID=”4” EntityID=”4” Size=”Small” Quality=” High” Fps=”10”/>

 </ControlChannel>

</SNAP>

XML Example for the request (stop 2 streams started in previous request)

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ControlChannel SessionID=”8325” ChannelID=”1”>

 <StropStream StreamID=”3”/>

 <StropStream StreamID=”4”/>

 </ControlChannel>

</SNAP>

XML Example for the request (start live event stream and archive video stream)

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ControlChannel SessionID=”8325” ChannelID=”1”>

 <StartLiveEventStream StreamID=”5” EventType=”MotionDetection”/>

 <StartArchiveVideoStream StreamID=”2” EntityID=”4” MaxFrames=100/>

 </ControlChannel>

</SNAP>

XML Example for the response (see Schema of <ExecutionStatus>)

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 < ExecutionStatus ReturnCode=”0”/>

</SNAP>

XML Example for the request. Start a view stream for a mobile device having 817 by 1624 pixels
of screen size. We create a 3 by 4 grid in it and start a live stream from camera 2.

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ControlChannel ChannelID="1" SessionID="1234">

 <StartLiveViewStream Fps="25.0" StreamID="1">

 <Canvas BgColor="#444444" Height="817" Width="1624"/>

 <Grid Columns="4" Gap="1" GapColor="#aaaaaa" Rows="3"/>

 <ViewPort ColSpan="1" EntityID="2" FillMode="LETTERBOX" Gridx="0" Gridy="0"

RowSpan="1">

 <ViewPortTitle BgColor="#eeeeee" FgColor="#000088" Height="15" Position="BOTTOM"

Text="Cam"/>

 </ViewPort>

 </StartLiveViewStream>

 </ControlChannel>

</SNAP>

 SNAP XML R1.0

17

XML example for a timed archive video request.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SNAP>

<ControlChannel ChannelID="1" SessionID="1801580153">

<StartTimedArchiveVideoStream EntityID="3" Mode="4" PlaybackSpeedRatio="25.0" StreamID="1"

TargetFPS="5.0">

<DateTimeFilter End="2017-09-05T09:11:00" Start="2017-09-05T09:10:00"/>

</StartTimedArchiveVideoStream>

</ControlChannel>

</SNAP>

XML example for controlling the stream.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SNAP>

<ControlChannel ChannelID="1" SessionID="1801580153">

<StreamControl Data="0" StreamID="1" Type="2" TypeName="RESUME_STREAM"/>

</ControlChannel>

</SNAP>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SNAP>

<ControlChannel ChannelID="1" SessionID="1148005993">

<StreamControl Data="0" StreamID="1" Type="1" TypeName="PAUSE_STREAM"/>

</ControlChannel>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

18

4.6 ReadChannel

Description: Read data from the channel. This request is blocked by the server until there is any
data to be pushed to the client. Which data is pushed is defined by ControlChannel
calls. ControlChannel can be called to an open channel any time, independent from
ReadChannel. The response to this request is terminated by the server after a timeout
or transferred data limit specified in OpenChannel request. The client then has to send
a new ReadChannel request within the Session timeout (see SNAP Sessions and
security for details about Session timeout). The server will cancel the session if no
ReadChannel request is received in time.

Parameters: SessionID – returned by OpenSession

ChannelID – returned by OpenChannel

Response: Multipart HTTP stream. Each part may contain one of the SNAP-response items
described below, or a JPEG frame. ExecutionStatus as text/xml part is the response in
case of error. Possible response items:

• <StartOfStream> Marks the beginning of a video or event stream. This element
precedes the first element of the stream. The attribute DataItemCount is added in
case of archive streams.

• <EndOfStream> Marks the termination of a stream. This element follows the last
element of the given stream.

• <FrameHeader> Header of a frame in live or archive stream. This part is always
followed by a part containing the frame itself.

• <Event> A live or archive event.

• <EntityTreeChanged> Notification on any change of <EntityTree>. See more
details at description of the request <GetEntityTree>.

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 < ReadChannel SessionID =”3456” ChannelID =”1”/>

</SNAP>

 SNAP XML R1.0

19

XML Schema of response EntityThreeChanged (part of MULTIPART)

The part containing this response is sent by the server whenever the camera topology has changed
on the server. The client may than reload the appropriate part of the tree.

<xs:element name="EntityTreeChanged">

 <xs:annotation>

 <xs:documentation>Notification on EntityTree change. (response to

 ReadChannel)</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:attribute name="RootEntityID" type="xs:integer" use="required">

 <xs:annotation>

 <xs:documentation>Topmost entity ID of changed part of the tree. </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

</xs:element>

XML Schema of response FrameHeader (part of MULTIPART)

The part containing this response precedes JPEG frames of live or archive video stream.
FrameHeader may contain optional <InPictureEvent> descriptor element. The element
<InPictureEvent> is attached to archived frame if any event has been generated by analyzing this
frame (MotionDetection event for example).

<xs:element name="FrameHeader">

 <xs:annotation>

 <xs:documentation>Header of one frame of live or archive video. (response to

 ReadChannel, next part is the frame) </xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element ref="InPictureEvent"/>

 </xs:sequence>

 <xs:attribute name="StreamID" type="xs:integer" use="required"/>

 <xs:attribute name="EntityID" type="xs:integer" use="required">

 <xs:annotation>

 <xs:documentation>ID of the source camera. </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="Type" use="required">

 <xs:annotation>

 <xs:documentation>Frame type. Until SNAP R1.1: JPEG, since R1.2: JPEG | MPEG | MXPEG |

H264 | GOP </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:Name">

 <xs:enumeration value="JPEG"/>

 <xs:enumeration value="MPEG"/>

 <xs:enumeration value="MXPEG"/>

 <xs:enumeration value="H264"/>

 <xs:enumeration value="GOP"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="MillisStamp" type="xs:unsignedLong" use="required">

Netavis SNAP XML R1.0 for Observer 5.0.1

20

 <xs:annotation>

 <xs:documentation>Frame creation stamp in millisec since

 beginnig of 1970 (unix).</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="DateTimeStamp" type="xs:dateTime" use="required">

 <xs:annotation>

 <xs:documentation>Frame creation stamp converted in

 XML Schema DateTime format.</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

</xs:element>

 SNAP XML R1.0

21

XML Schema of response Event (part of MULTIPART).

The part containing this response is sent by the server if the client has been registered for receiving
live or archived event stream. See Appendix A – List of events for list of possible EventTypes and
their properties.

<xs:element name="Event">

 <xs:annotation>

 <xs:documentation>Live event notification or result of an

 event query. (response to ReadChannel)</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="EventProperty" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="StreamID" use="required"/>

 <xs:attribute name="EventType" type="xs:Name" use="required">

 <xs:annotation>

 <xs:documentation>Event type name.</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="EventID" type="xs:integer" use="required">

 <xs:annotation>

 <xs:documentation>Unique ID of this event. </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="MillisStamp" type="xs:unsignedLong" use="required">

 <xs:annotation>

 <xs:documentation>Event creation stamp in millisec since

 beginnig of 1970 (unix).</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="DateTimeStamp" type="xs:dateTime" use="required">

 <xs:annotation>

 <xs:documentation>Event creation stamp converted in XML

 Schema DateTime format.</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

</xs:element>

XML Schema of response StartOfStream (parts of MULTIPART).

<xs:element name="StartOfStream">

 <xs:annotation>

 <xs:documentation>Marks start of video or event stream.

 (response to ReadChannel)</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:attribute name="StreamID" type="xs:integer" use="required"/>

 <xs:attribute name="DataItemCount" type="xs:integer">

 <xs:annotation>

 <xs:documentation>Number of data items in stream

 (only for archive video or event stream).</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

Netavis SNAP XML R1.0 for Observer 5.0.1

22

</xs:element>

XML Schema of response EndOfStream (parts of MULTIPART).

<xs:element name="EndOfStream">

 <xs:annotation>

 <xs:documentation>Marks end of the stream. (response to ReadChannel)</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:attribute name="StreamID" type="xs:integer" use="required"/>

 </xs:complexType>

</xs:element>

Example for a multipart response to ReadChannel. Two FrameHeaders with attached JPEG
frames, and one Event is shown in this example. HTTP protocol tags are included in this example.

HTTP/1.1 200 OK\r\n

Content-Type: multipart/x-mixed-replace;boundary=myboundary\r\n

--myboundary\r\n

Content-Type: text/xml\r\n

Content-Length: 163\r\n

\r\n

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<FrameHeader StreamID=”1” EntityID=”4” Type=”JPEG”

 StampMillis=563272881812345

 StampDateTime=”2005-08-02T12:28:36.45-01:00”/>

</SNAP>

--myboundary\r\n

Content-Type: image/jpeg\r\n

Content-Length: 9518\r\n

\r\n

<JPEG Frame (9518 bytes length)>

--myboundary\r\n

Content-Type: text/xml\r\n

Content-Length: 163\r\n

\r\n

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<FrameHeader StreamID=”1” EntityID=”4” Type=”JPEG”

 StampMillis=563272881812385

 StampDateTime=”2005-08-02T12:28:36.85-01:00”/>

</SNAP>

--myboundary\r\n

Content-Type: image/jpeg\r\n

Content-Length: 9416\r\n

\r\n

<JPEG Frame (9416 bytes length)>

--myboundary\r\n

Content-Type: text/xml\r\n

Content-Length: 289\r\n

\r\n

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<Event StreamID=”1” EventType=”PlateNumberRecognision” EventID=”34652”

 MillisStamp=”234241234125453” DateTimeStamp=”2005-01-02T00:28:30.23”>

 <EventProperty>

 <Name>EntityID</Name>

 <Value>3</Value>

 <Type>Integer</Type>

 SNAP XML R1.0

23

 </EventProperty>

 <EventProperty>

 <Name>PlateNumber</Name>

 <Value>IUR 116</Value>

 <Type>String</Type>

 </EventProperty>

</Event>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

24

4.7 CloseChannel

Description: Close a channel. Close channel will automatically stop all streams started within the
channel.

Parameters: SessionID – returned by OpenSession

ChannelID – returned by OpenChannel

Response: <ExecutionStatus>

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 < CloseChannel SessionID =”3456” ChannelID =”1”/>

</SNAP>

XML Example for the response (see schema of <ExecutionStatus>)

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 < ExecutionStatus ReturnCode=”0”/>

</SNAP>

 SNAP XML R1.0

25

4.8 PropagateEvent

Description: Send an external event to Netavis EMS. Each event which wants to be propagated to
the Netavis server has to contain two attributes (SessionID and EventType) and a list
of <EventPropery> elements. Each element <EventPropery> has to contain the
following elements: <Name>, <Value> and <Type>. Legal type elements are: String,
Integer, Long, Float, Double and Boolean. The content of the element Value has to
correspond to its type. The list of supported EventTypes and its properties is
described in Appendix A – List of events . Please note, that custom events can also be
propagated to the Netavis server (see CusomEvent in Appendix A – List of events).

Parameters: SessionID – Returned by OpenSession

EventType – Type of the Event

EventStamp – UNIX time stamp of the event.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

< PropagateEvent SessionID =”3456” EventType=”MotionDetection”>

 <EventProperty>

 <Name>CameraID</Name>

 <Value>4</Value>

 <Type>Integer</Type>

 </EventProperty>

 <EventProperty>

 <Name>CameraName</Name>

 <Value>MyCamera</Value>

 <Type>String</Type>

 </EventProperty>

 <EventProperty>

 <Name>EventStamp</Name>

 <Value>1223355554557</Value>

 <Type>Long</Type>

 </EventProperty>

 <EventProperty>

 <Name>EventName</Name>

 <Value>Car on the street</Value>

 <Type>String</Type>

 </EventProperty>

</ PropagateEvent>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

26

4.9 PerformAction
Description: Execute a standard Netavis action. Each action must contain two attributes

(SessionID and ActionType) and a list of <ActionPropery> elements. Each element
<ActionPropery> has to contain the following elements: <Name>, <Value> and
<Type>. Legal type elements are: String, Integer, Long, Float, Double and Boolean.
The content of the element Value has to correspond to its type. The list of supported
ActionTypes and its properties is described in Appendix C – List of available Actions.

Parameters: SessionID – Returned by OpenSession

ActionType – Type of the Action (see Appendix C – List of available Actions)

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

< PerformAction SessionID =”3456” ActionType=”SetCameraRecordingState”>

 <ActionProperty>

 <Name>CameraID</Name>

 <Value>4</Value>

 <Type>Integer</Type>

 </ ActionProperty >

 < ActionProperty >

 <Name>Function</Name>

 <Value>Start</Value>

 <Type>String</Type>

 </ ActionProperty >

 < ActionProperty >

 <Name>VideoFormat</Name>

 <Value>JPEG</Value>

 <Type>String</Type>

 </ ActionProperty >

 < ActionProperty >

 <Name>FrameSize</Name>

 <Value>High</Value>

 <Type>String</Type>

 </ ActionProperty >

 < ActionProperty >

 <Name>FrameQuality</Name>

 <Value>Medium</Value>

 <Type>String</Type>

 </ ActionProperty >

 < ActionProperty >

 <Name>FrameRate</Name>

 <Value>5.0</Value>

 <Type>Float</Type>

 </ ActionProperty >

</ PerformAction >

</SNAP>

 SNAP XML R1.0

27

4.10 SetArchiveProtection

Description: Protect or unprotect archive records.

Parameters: SessionID – Returned by OpenSession

 EntityID – Unique ID of the camera

 From – UNIX timestamp when the protection should be started

 To – UNIX timestamp when the protection should be finished

 Set – True for protect, false for unprotect the records.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <SetArchiveProtection SessionID =”3456” EntityID=”38” From=”1328780727” To=” 1328784327”

Set=”true”/ >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

28

4.11 GetVideoArchiveMap

Description: Get recording-status-map of the video archive of a camera. The recording-status-map
contains information about recording status at the timeline specified by the request.
The timeline is split into several time periods. Each period is represented by an
element <MapItem> in the response to this request. Thus, the response is a list of
<MapItem>s. Each <MapItem> covers a part of the requested timeline. The start of
time period covered by <VideoArchiveMap> is described by attribute StartDateTime.
The <VideoArchiveMap> contains a Unit attribute, which describes the duration of
one time-unit within the <MapItem>. The time-unit can be either “Day” or “Minute”. If
the time-unit is “Day” then the timeline is split into <MapItems> having duration of 1
month (28-31 time-units). If the time-unit is “Minute” then the timeline is split into
<MapItems> having duration of 1 hour (60 time-units). Each <MapItem> contains
attribute FrameCount which contains the total number of frames recorded in the time
period covered by the item. Each <MapItem> contains a sequence of hexadecimal
coded character (0-F). Each character represents one time-unit. The information
coded in one time-unit is the following:

• Bit0 is set: there are recorded frames within time unit

• Bit1 is set: there are event-triggered recordings within time unit

• Bit2 is set: frames within time unit are protected against removal

• Bit3: reserved for future use

Values should be extracted using bit operations.

Parameters: SessionID – returned by OpenSession

 EntityID – EntityID of the camera

Unit – Specifies time unit on the timeline. It can be “Day” or “Minute”. When omitting
this parameter, the server defines unit automatically as follows: If timeline longer than
1 day then unit is “Day” else unit is “Minute”.

<DateTimeFilter> or <MillisFilter> elements specify the time interval requested. Start
of interval is rounded down; end of interval is rounded up to the next day.

Response: <VideoArchiveMap> on success or <ExecutionStatus> on error.

XML Example for the request GetVideoArchiveMap

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetVideoArchiveMap SessionID=”8325” EntityID=”7” Unit=”Minute”>

 <DateTimeFilter Start=”2005-02-01T00:00:00” Duration=”P2D”/>

 </GetVideoArchiveMap>

</SNAP>

 SNAP XML R1.0

29

XML Examples for response VideoArchiveMap

Response for a Map request for 2 days, staring at 2005-02-01, unit is “Minutes”.

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <VideoArchiveMap EntityID=”7” StartDateTime=”2005-02-01T00:00:00” Unit=”Minute”>

 <MapItem FrameCount=”3421”>

 00000000011111111113111100011101111000011311111111111 11100011111</MapItem>

 <MapItem FrameCount=”642”>

 00000000000000000000000000000000003333011311111111111 11100011000</MapItem>

 <MapItem FrameCount=”1235”>

 11111111111111111000000000000000000000000311111111111 11100011111</MapItem>

 .

 . 44 items

 .

 <MapItem FrameCount=”4567”>

 11000011011111111113111100011101111000011001111111111 11100011001</MapItem>

 </VideoArchiveMap >

</SNAP>

Response for a Map request for 1 year, staring at 2005-01-01, unit is “Day”.

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <VideoArchiveMap EntityID=”7” StartDateTime=”2005-01-01T00:00:00” Unit=”Day”>

 <MapItem FrameCount=”1663421”>

 0000000001111111111311110001110</MapItem>

 <MapItem FrameCount=”445512”>

 0000000000000000000000000000</MapItem>

 <MapItem FrameCount=”34523”>

 1111111111111111100000000000000</MapItem>

 .

 . 8 items

 .

 <MapItem FrameCount=”112567”>

 1100001101111111111311110001110</MapItem>

 </VideoArchiveMap >

</ SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

30

4.12 VideoStreamAnnotation

Description: This request is used for annotating live or archive video streams with text.
For backward compatibility reasons we also kept the “AddAnnotationToVideoStream”
request. The parameters from ForegroundColor to BlinkDuration are not yet supported
on server-side.

Parameters: SessionID – Returned by OpenSession

AnnotationID – User declared id for future identification

CameraID – ID of the camera for the annotation

Text – Annotation text

Action – “Start” or “Stop”, default: “Start”

Destination – “Live”, “Archive” or LiveAndArchive”, default: “Live”

ForegroundColor – Color of the text, default: “White”. Possible formats are
“RGB0,0,0”, html style “#FFFFFF” or named color one of “White“, “Black“, “Green“,
“Blue“, “Red“, “Orange“, “Gray“, “Darkgray“, “Lightgray“, “Magenta“, “Pink“, or “Cyan“

BackgroundColor – Color of the text background, default: not defined (transparent).
Same format as foreground color.

FontType – Text font, default: “System”

FontSize – Text size, default: “12”

Alignment – Where to stick the box in the video image, default: “LowerCenter”.
Possible values are: “UpperLeft”, “UpperRight”, “UpperCenter”, “LowerLeft”,
“LowerRight”, “LowerCenter”

Margin – Size of the margin around the text in pixels, default: “5”

Wrapping – Boolean for wrapping the text or not, default: “false”

StartTimestamp – Timestamp when to start the annotation, default: now. You can
define a timestamp in the ISO8601-compliant format ‘yyyy-MM-dd’T’HH:mm:ss.SSS’
or also in the standard Unix timestamp format

StopTimestamp – Timestamp when to stop the annotation.

StopAfterMillisec – Stop the annotation automatically after this value.

StopOnClick – Stop the annotation on a mouse click in the client GUI.
Caution: The annotation is unlimited if no StopTimestamp, StopAfterMillisec, or
StopOnClick isdefined.

BlinkDuration – Blinks the annotation with this duration in millisec.

EventStorage – How to save the corresponding event in the event database.
Valid values are: “NoSave”, “SaveStart”, “SaveStop”, “SaveAll”.
Default: “SaveStart"

EventVisibility – How to show the corresponding event in the client GUI Event bars.
Valid values are: “NoShow”, “ShowStart”, “ShowStop”, “ShowAll”.
Default: “NoShow"

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <VideoStreamAnnotation SessionID =”1” CameraID=”1” Text=”Alert!” EndOnClick=”true” />

</SNAP>

 SNAP XML R1.0

31

4.13 ShowCameraInViewport
Description: This request brings up a view panel in the client and places a camera in raw/column

position.

Parameters: SessionID – Returned by OpenSession

 TargetIP –Address of the client on which the operation will be executed (can be an
empty string)

 TargetUser – Target machine is selected based on the name of the logged user (can
be an empty string)

 NOTE: TargetIP and TargetUser can not be empty at the same time

 EntityID – The unique identifier of the selected camera

 WindowID – Defines the ID of the Online Monitor window in which the operation will
take place (should be -1 if not defined).

 PanelName – Name of the panel in the client which will be used for showing the
camera

 RawIndex – Defines the raw in which the camera image will be shown (should be -1 if
not defined)

 ColumnIndex – Defines the column in which the camera image will be shown (should
be -1 if not defined)

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <ShowCameraInViewport SessionID =”3456” TargetIP=”192.168.7.2” TargetUser=”” EntityID=”38”

 WindowID=”1” PanelName=”First Floor” RawIndex=”0” ColumnIndex=”0” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

32

4.14 ShowViewOfWindow
Description: This request brings up a view panel in the client.

Parameters: SessionID – Returned by OpenSession

 TargetIP – Mandatory (but can be an empty string), address of the client on which the
operation will be executed

 TargetUser – Mandatory (but can be an empty string), target machine is selected
based on the name of the logged user

 NOTE: TargetIP and TargetUser can not be empty at the same time

 WindowID – Mandatory (should be -1 if not defined), defines the ID of the Online
Monitor window in which the operation will take place

 PanelName – Mandatory, name of the panel in the client which will be used for
showing the camera

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <ShowViewOfWindow SessionID =”3456” TargetIP=”192.168.7.2” TargetUser=””

 WindowID=”1” PanelName=”First Floor” / >

</SNAP>

 SNAP XML R1.0

33

4.15 StartSmartGuard
Description: This request starts the shuffling of a group of view panels in the client.

Parameters: SessionID – Returned by OpenSession

 TargetIP – Address of the client on which the operation will be executed (can be an
empty string)

 TargetUser – Target machine is selected based on the name of the logged user (can
be an empty string)

 NOTE: TargetIP and TargetUser can not be empty at the same time

 ViewGroupName – Mandatory, name of the group which will be shuffled

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <StartSmartGuard SessionID =”3456” TargetIP=”192.168.7.2” TargetUser=””

 ViewGroupName =”Group1” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

34

4.16 StopSmardGuard
Description: This request will stop a previously started shuffling of a group of view panels in the

client.

Parameters: SessionID – Returned by OpenSession

 TargetIP – Address of the client on which the operation will be executed (can be an
empty string)

 TargetUser – Target machine is selected based on the name of the logged user (can
be an empty string)

 NOTE: TargetIP and TargetUser can not be empty at the same time

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <StopSmartGuard SessionID =”1234” TargetIP=”192.168.7.2” TargetUser=”” / >

</SNAP>

 SNAP XML R1.0

35

4.17 GetEntityTree

Description: Get camera topology from the server. The camera tree is represented by a list of
<EntityTreeNode> elements. Each <EntityTreeNode> element represents either a
camera or a group (see Type attribute of <EntityTreeNode >). Each <EntityTreeNode>
element has attributes EntityID and ParentEntityID. An EntityID is a unique ID (integer
>= 1) of the camera or group on the session’s Netavis server. The attribute
ParentEntityID is either the ID of the group which contains this entity, or 0 in case of
the root of the tree currently transmitted (not neccesarily the root of the camera tree
managed by the server). The root <EntityTreeNode> element and any mount-point
<EntityTreeNode> do contain a <Host> element, while other nodes do not contain
<Host> element. A mount-point is an <EntityTreeNode> which has been imported
from a remote Netavis server (exporter host) to the session’s Netavis server. A mount-
point can be a camera or a group. Note that the EntityID of a mounted camera or
group on session’s Netavis server may differ from that on the exporter server. If the
connection to the remote host is alive then the value of element
<EntityTreeNode ><Host><Connected> is “true”. If the mount-point is a group and the
<Host> is connected then all child elements under the mount-point are visible in the
tree. If the <Host> is not connected (TCP/IP connection is broken or the remote host is
not alive) then no child elements are incorporated under the mount-point and the
mount-point’s attributes Name and Type are not set (empty strings). Any change in the
EntityTree (add/remove/modify nodes and change of connected status of mount
points) is propagated to the SNAP client via <EntityTreeChanged>. The element
<EntityTreeChanged> is pushed by the server in a Channel (response to
<ReadChannel>, please see description further in the chapter) which is registered for
this change propagation via <ControlChannel><RegisterForDataChangeNotification>.
The SNAP client may reload the part of the tree which has been marked as changed
by the attribute RootEntityID of <EntityTreeChanged>.

Parameters: SessionID – Returned by OpenSession

 RootEntityID – EntityID of the root node of this request (default = 1)

 RequestedDetails – Optional parameter for defining the additional information the user
wants about camera entities. Possible values are as follows:

▪ IP_ADDRESS – to include the IP address of the camera,

▪ STATUS_CODES – to include the current status of the camera,

▪ PTZ_DETAILS – to include the PTZ related capabilities of the camera.

Sort – Optional parameter, if set to true sort the tree by entity name (default = false)

Response: <EntityTree> on success or <ExecutionStatus> on error.

XML Example for the request GetEntityTree

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetEntityTree SessionID=”8325” RequestedDetails=”PTZ_DETAILS" />

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

36

 XML Example for the response EntityTree

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<EntityTree>

 <EntityTreeNode EntityID=”1” ParentEntityID=”0” Type=”Group” Name=”My Root Group”>

 <Host>

 <Name>MyNetavisServerName</Name>

 <Address>192.168.0.12</Address>

 <HostID>23234235145346267</HostID>

 <Connected>true</Connected>

 </Host>

 </EntityTreeNode>

 <EntityTreeNode EntityID=”2” ParentEntityID=”1” Type=”Camera” Name=”My Camera”/>

 <PTZCapabilities>

 <SupportsPan>false</SupportsPan>

 <SupportsTilt>false</SupportsTilt>

 <SupportsZoom>false</SupportsZoom>

 <SupportsCenterPointMove>false</SupportsCenterPointMove>

 <SupportsContinuousMove>false</SupportsContinuousMove>

 <SupportsRelativeMove>false</SupportsRelativeMove>

 <SupportsAbsoluteMove>false</SupportsAbsoluteMove>

 <SupportsQueryPosition>false</SupportsQueryPosition>

 <SupportsPresetPositions>false</SupportsPresetPositions>

 </PTZCapabilities>

 <EntityTreeNode EntityID=”3” ParentEntityID=”1” Type=”Group” Name=”My Group”/>

 <EntityTreeNode EntityID=”4” ParentEntityID=”3” Type=”Camera” Name=”Partners Camera1”>

 <Host>

 <Name>PartnersRemoteNetavisServerName</Name>

 <Address>partner.dyndns.org:6080</Address>

 <HostID>456782898982221123</HostID>

 <Connected>true</Connected>

 </Host>

 <PTZCapabilities>

 <SupportsPan>false</SupportsPan>

 <SupportsTilt>false</SupportsTilt>

 <SupportsZoom>false</SupportsZoom>

 <SupportsCenterPointMove>false</SupportsCenterPointMove>

 <SupportsContinuousMove>false</SupportsContinuousMove>

 <SupportsRelativeMove>false</SupportsRelativeMove>

 <SupportsAbsoluteMove>false</SupportsAbsoluteMove>

 <SupportsQueryPosition>false</SupportsQueryPosition>

 <SupportsPresetPositions>false</SupportsPresetPositions>

 </PTZCapabilities>

 </EntityTreeNode>

 <EntityTreeNode EntityID=”5” ParentEntityID=”3” Type=”Group” Name=”Partners Group”>

 <Host>

 <Name>PartnersRemoteNetavisServerName</Name>

 <Address>partner.dyndns.org:6080</Address>

 <HostID>456782898982221123</HostID>

 <Connected>true</Connected>

 </Host>

 </EntityTreeNode>

 <EntityTreeNode EntityID=”6” ParentEntityID=”5” Type=”Camera” Name=”Partners Camera2”>

 <PTZCapabilities>

 <SupportsPan>false</SupportsPan>

 <SupportsTilt>false</SupportsTilt>

 <SupportsZoom>false</SupportsZoom>

 <SupportsCenterPointMove>false</SupportsCenterPointMove>

 <SupportsContinuousMove>false</SupportsContinuousMove>

 <SupportsRelativeMove>false</SupportsRelativeMove>

 SNAP XML R1.0

37

 <SupportsAbsoluteMove>false</SupportsAbsoluteMove>

 <SupportsQueryPosition>false</SupportsQueryPosition>

 <SupportsPresetPositions>false</SupportsPresetPositions>

 </PTZCapabilities>

 </EntityTreeNode>

 <EntityTreeNode EntityID=”7” ParentEntityID=”5” Type=”Camera” Name=”Partners Camera3”>

 <PTZCapabilities>

 <SupportsPan>false</SupportsPan>

 <SupportsTilt>false</SupportsTilt>

 <SupportsZoom>false</SupportsZoom>

 <SupportsCenterPointMove>false</SupportsCenterPointMove>

 <SupportsContinuousMove>false</SupportsContinuousMove>

 <SupportsRelativeMove>false</SupportsRelativeMove>

 <SupportsAbsoluteMove>false</SupportsAbsoluteMove>

 <SupportsQueryPosition>false</SupportsQueryPosition>

 <SupportsPresetPositions>false</SupportsPresetPositions>

 </PTZCapabilities>

 </EntityTreeNode>

</EntityTree>

</ SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

38

4.18 GetIODeviceList

Description: This request returns the list of the available IO devices on the server.

Parameters: SessionID – Returned by OpenSession

Response: <IODeviceList> on success or <ExecutionStatus> on error.

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetIODeviceList SessionID =”3456”/ >

</SNAP>

XML Example of the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>???

 <IODevice DeviceID="0" DeviceName="DeviceName0" StatusID="0" StatusText="StatusText0">

 <IOPort PortID="0" PortType="PortType0" PortValue="PortValue0"/>

 </IODevice>

</IODeviceList>

</SNAP>

 SNAP XML R1.0

39

4.19 GetPTZPositionList

Description: This request simply returns the list of the selected camera’s defined PTZ positions.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

Response: <PTZPositionList> on success or <ExecutionStatus> on error.

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetPTZPositionList SessionID =”3456” EntityID=”38” / >

</SNAP>

XML Example for the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<PTZPositionList>

 <PTZPosition PresetPosID="1" EntityID="38" Name="Door" Comment="Blinden gasse" Pan="0" Tilt="0"

Zoom="0"/>

 <PTZPosition PresetPosID="2" EntityID="38" Name="Window" Comment="Blinden gasse" Pan="0"

Tilt="0" Zoom="0"/>

</PTZPositionList>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

40

4.20 GetPTZRouteList

Description: This request simply returns the list of the selected camera’s defined PTZ routes.

Parameters: SessionID – Returned by OpenSession

 EntityID – Mandatory, the unique identifier of the selected camera

Response: <PTZRouteList> on success or <ExecutionStatus> on error.

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetPTZRouteList SessionID =”3456” EntityID=”38” / >

</SNAP>

XML Example for the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<PTZRouteList>

 <PTZRoute EntityID="38" RouteID="1" Name="Outside" Comment=""/>

</PTZRouteList>

</SNAP>

 SNAP XML R1.0

41

4.21 GetPTZRouteDefinition

Description: This request returns the list of the selected camera’s PTZ route definition.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

 RouteID – The unique identifier of the selected route, given by the GetPTZRoutesList

Response: <PTZRouteDefinition> on success or <ExecutionStatus> on error XML Schema of the
request

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetPTZRouteDefinition SessionID =”3456” EntityID=”38” RouteID=”1” / >

</SNAP>

XML Example for the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

<PTZRouteDefinition>

 <PTZRouteDefinitionElement EntityID="38" RouteID="1" PresetPosID="1" StayOnTargetTime="10000"

MoveToTargetTime="0" Sequence="0"/>

 < PTZRouteDefinitionElement EntityID="38" RouteID="1" PresetPosID="2" StayOnTargetTime="20000"

MoveToTargetTime="0" Sequence="0"/>

</PTZRouteDefinition>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

42

4.22 LockPTZResource

Description: This request allocates the related PTZ resource for further PTZ operations.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <LockPTZResource SessionID =”3456” EntityID=”38” / >

</SNAP>

 SNAP XML R1.0

43

4.23 RefreshPTZResource

Description: This request keeps locking on the related PTZ resource.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <RefreshPTZResource SessionID =”3456” EntityID=”38” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

44

4.24 ReleasePTZResource

Description: This request releases the exclusive access on the related PTZ resource.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

Response: ExecutionStatus

XML Example for the request

<?xl version="1.0" encoding="UTF-8"?>

<SNAP>

 <ReleasePTZResource SessionID =”3456” EntityID=”38” / >

</SNAP>

 SNAP XML R1.0

45

4.25 StartPTZRoute

Description: This request starts the predefined PTZ routing on a camera.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

 RouteID – The unique identifier of the selected route

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <StartPTZRoute SessionID =”3456” EntityID=”38” RouteID=”1” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

46

4.26 StopPTZRoute

Description: This request stops the predefined and related PTZ routing on a camera.

Parameters: SessionID – Returned by OpenSession

 EntityID – Mandatory, the unique identifier of the selected camera

 RouteID – Mandatory, the unique identifier of the selected route

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <StopPTZRoute SessionID =”3456” EntityID=”38” RouteID=”1” / >

</SNAP>

 SNAP XML R1.0

47

4.27 SetPTZPosition
Description: This request directs the PTZ head of the camera to a preset position.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera

 PositionID – Identifier of the position. Existing IDs can be obtained by the
GetPTZPositionList command.-

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <SetPTZPosition SessionID =”3456” EntityID=”38” PositionID=”1” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

48

4.28 PTZCenterClick
Description: Move the defined (X,Y) position to the center of the picture.

Parameters: SessionID – Returned by OpenSession

 EntityID – Mandatory, the unique identifier of the selected camera

 X – X coordinate of the click relative to the top-right corner.

 Y – Y coordinate of the click relative to the top-right corner.

 ImageWidth – Width of the image on which the click happened.

 ImageHeight – Height of the image on which the click happened.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <PTZCenterClick SessionID =”3456” EntityID=”38” X=”100” Y=”50” ImageWidth=”320”

ImageHeight=”240” / >

</SNAP>

 SNAP XML R1.0

49

4.29 ContinuousPTZ
Description: Move the PTZ head in the given direction with given speed.

Parameters: SessionID – Returned by OpenSession

 EntityID – Mandatory, the unique identifier of the selected camera

 PanSpeed – Speed of pan. Valid values are from -100 to 100.

 TiltSpeed – Speed of tilt. Valid values are from -100 to 100.

 ZoomSpeed – Speed of zoom. Valid values are from -100 to 100.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <ContinuousPTZ SessionID =”3456” EntityID=”38” PanSpeed=”10” TiltSpeed=”10” ZoomSpeed=”0”

ImageHeight=”240” / >

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

50

4.30 MovePTZRelative
Description: Move the PTZ head in the given direction with given amount, relative to its current

position.

Parameters: SessionID – Returned by OpenSession

 EntityID – The unique identifier of the selected camera
PanDir – Horizontal movement direction: left, right.
PanSpeed – Speed of pan. Valid values are from 1, 2 or 3.
TiltDir – Vertical movement direction: up, down.
TiltSpeed – Speed of tilt. Valid values are from 1, 2 or 3.
ZoomDir – Zoom direction: in, out.
ZoomSpeed – Speed of zoom. Valid values are from 1, 2 or 3.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <MovePTZRelative SessionID =”3456” EntityID=”38” PanDir=”left” PanSpeed=”1” TiltDir=”up”

TiltSpeed=”1” ZoomDir=”in” ZoomSpeed=”1” / >

</SNAP>

 SNAP XML R1.0

51

4.31 GetLicensePlateLists
Description: Retrieve the saved license plate lists from the server.

Parameters: SessionID – Returned by OpenSession.

Response: <LicensePlateLists> on success or <ExecutionStatus> on error with the specific error
code.

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <GetLicensePlateLists SessionID="1234"/>

</SNAP>

XML Example for the response

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <LicensePlateLists>

 <LicensePlateList ListID="1">

 <Name>my_list1</Name>

 <IgnoreSeparators>true</IgnoreSeparators>

 <Tolerance>1</Tolerance>

 <LicensePlates>

 <LicensePlate>ACI-142</LicensePlate>

 <LicensePlate>BBC-132</LicensePlate>

 <LicensePlate>BOBO-00</LicensePlate>

 </LicensePlates>

 </LicensePlateList>

 <LicensePlateList ListID="2">

 <Name>my_list2</Name>

 <IgnoreSeparators>true</IgnoreSeparators>

 <Tolerance>1</Tolerance>

 <LicensePlates>

 <LicensePlate>GHI-142</LicensePlate>

 <LicensePlate>BII-123</LicensePlate>

 <LicensePlate>BOBO-01</LicensePlate>

 </LicensePlates>

 </LicensePlateList>

 </LicensePlateLists>

</SNAP>

Netavis SNAP XML R1.0 for Observer 5.0.1

52

4.32 SetLicensePlateLists
Description: Set license plate lists to the desired values. Any element that is not present in the

request will be ignored by the server (e.g.: omitting <Name> for a list will not change
the name of the list). Attribute paramters are mandatory and thus cannot be omitted
from the request.

Parameters: SessionID – Returned by OpenSession

 <LicensePlateLists> – The license plate lists to set.

Response: ExecutionStatus

XML Example for the request

<?xml version="1.0" encoding="UTF-8"?>

<SNAP>

 <SetLicensePlateLists SessionID="1234">

 <LicensePlateLists>

 <LicensePlateList ListID="1">

 <Name>my_list1</Name>

 <IgnoreSeparators>true</IgnoreSeparators>

 <Tolerance>1</Tolerance>

 <LicensePlates>

 <LicensePlate>ACI-142</LicensePlate>

 <LicensePlate>BBC-132</LicensePlate>

 <LicensePlate>BOBO-00</LicensePlate>

 </LicensePlates>

 </LicensePlateList>

 <LicensePlateList ListID="2">

 <Name>my_list2</Name>

 <IgnoreSeparators>true</IgnoreSeparators>

 <Tolerance>1</Tolerance>

 <LicensePlates>

 <LicensePlate>GHI-142</LicensePlate>

 <LicensePlate>BII-123</LicensePlate>

 <LicensePlate>BOBO-01</LicensePlate>

 </LicensePlates>

 </LicensePlateList>

 </LicensePlateLists>

 </SetLicensePlateLists>

</SNAP>

 SNAP XML R1.0

53

Appendix A – List of events

This appendix describes the list of Events supported by the current SNAP implementation. Please
refer to requests <StartLiveEventStream>, <StartArchiveEventStream> and <PropagateEvent> for
more information about how to receive or send events from/to a Netavis server.

Note: CameraID used below can be obtained by requesting the camera tree by the SNAP request
<GetEntityTree>, but it also appears in the Netavis standard client application in the Camera
Administration Tool next to the camera name in parentheses.

The list of valid events and their actual parameters in Netavis may change from version to version.
This information can be found and downloaded from each Netavis server via the web interface. Start
an internet browser and enter the IP address of your Netavis host. Click on the Customizer login and
then to the Download configuration files link. On the next page lookup and download the
EMSAPIdoc.zip. After un-compressing the archive open the index.html file with your browser. All
filterable events can be looked at in details after selecting the server.event_manager.event package.

CustomEvent is a special case where details for seding is different. Therefore, a detailed description is
given here separately.

EventType: CustomEvent (used only for propagating external custom events to Observer)

Description: A custom event is an arbitrary event specified and sent by the SNAP client to the Netavis
server. Besides standard events described above, any custom event can be propagated
by the SNAP Client via <PropagateEvent>. Before sending a custom event, it needs to be
registered. Both registration and sending has to be done via request <PropagateEvent>.
The server does register a custom event having type EventType (value of the property
“EventType”, see below in the table) at the very first time, when the event is propagated.
Registration of a custom event means that the server assigns EventText and parameter
mappings to an EventType. Thus, the property EventText has to be included at the first
time when the event is propagated, but it must be omitted (do not include the property
named EventText) at any further event propagation. A custom event of type “EventType”
will be unregistered, if an event with empty EventText is propagated. Empty EventText
means, that the property with Name EventText is sent, but the Value element is empty or
omitted).
Note, that unregistering an event causes removing all events of this type from the event
database. Propagating an event with a non-empty EventText, which is different from the
actual registration, will replace the event text in the serve’rs event registration database
(Netavis 1.7 or higher).
Any custom event may contain a maximum of 5 custom properties. At registration time,
properties named “Param1” to “Param5” can be mapped to any custom event parameter
name. The custom parameter name has to be appended to the name ParamN separated
by a colon. (e.g.: “Param1:MyParamName”) Custom parameter name must not contain
any whitespaces. The custom parameter mapping is allowed only at first time, when the
event is propagated (registration time). The server registers the parameter mapping, so
any further custom events can be sent either by using the property name “ParamN” or
using the custom name of it. Mapping of custom parameter name cannot be changed.
Propagating an event with different parameter property mapping then the actual
registration will cause an error (see error code 401 in Appendix C). Each custom
parameter must have one of the following types: String, Integer, Float, Double or
Boolean. The Value element of an <EventProperty> must match the type of the property.

Important: It is necessary to send the first event just for registration purpose. If the
property named “EventText” is included, then the event will not be saved or handled, but
it will be used for registration (if value element is not empty) or deregistration (if value
element is empty).

Netavis SNAP XML R1.0 for Observer 5.0.1

54

Properties:

Name TYPE DESCRIPTION

EventType String Name of the custom event type (e.g.
“MyPlateNumberRecognition”)

EventText String Log text of the event (appears in the
Observer event list). It may contain
placeholders for event parameters
which will be replaced by the actual
value of the parameter. The format of
the placeholder is %ParamN%, where N
is a number between 1 and 5, or use
the custom parameter name like
%MyParamNName% if specified (see
below). Note: if the value of this
property is empty then the event of type
EventType will be unregistered, thus all
events will be removed from the
database!

EventStamp Long Time stamp of the event. (millis since
epoch, 1.jan.1970). Use the attribute
MillisStamp of a video frame if the event
is generated by analyzing a frame.

CameraID Integer EntityID of a camera, if the event is
camera specific. The property can be
omitted in case of non-camera specific
events. If this property is specified then
Netavis will try to retrieve the first
archive frame having timestamp >=
EventStamp, whenever the user clicks
on the event in the event list or in the
event bar.

Param1:MyParam1Name legalParamType Generic event parameter with optional
custom mapping

Param2:MyParam2Name legalParamType Generic event parameter with optional
custom mapping

Param3:MyParam3Name legalParamType Generic event parameter with optional
custom mapping

Param4:MyParam4Name legalParamType Generic event parameter with optional
custom mapping

Param5:MyParam5Name legalParamType Generic event parameter with optional
custom mapping

LegalParamTypes are: String, Integer, Long, Float, Double or Boolean.

 SNAP XML R1.0

55

Appendix B – List of error codes

The codes and error texts below are returned by the server in response ExecutionStatus.

Code Error Text

0 No error. Execution OK.

10 XML format error: %

101 Cannot open SNAP session (no SNAP license available).

102 Cannot open SNAP session (no more user licenses available).

103 Illegal user/passwd. User=%

104 Illegal request received from IP %, session has been opened form IP %.

200 Session not found. SessionID=%

201 Channel not found. ChannelID=%

202 Entity not found. EntityID=%

203 Entity is not a camera. EntityID=%

204 Stream not found. ChannelID=% StreamID=%

205 No camera access right. EntityID=% User=%

206 No event access right. User=%

207 Resource locked by another user. Resource=% User=%

208 Server is busy (or can not take any more URL connections)

209 Server has reached the max number of configured transcoders

210 Session user has no right to access license plate lists

211 No license plate list found for the specified ListID

212 Command not available on an NNS slave

300 TimeLimit out of range. TimeLimit=%

301 DataLimit out of range. DataLimit=%

400 Illegal EventType. EventType=%

401 Illegal event/action property name. EventActionType=% PropertyName=%

402 Illegal event/action property value. PropertyName=% PropertyValue=%

403 Illegal event/action property type. PropertyName=% PropertyType=%

404 Missing property EventText for Costom Event registration. EventType=%

405 Illegal ActionType. ActionType=%

406 Missing event/action property. EventActionType=% PropertyName=%

500 Illegal stream property. PropertyName=% PropertyValue=%

600 File operation ERROR: %

601 Resource lock operation ERROR: %

Netavis SNAP XML R1.0 for Observer 5.0.1

56

Appendix C – List of available Actions

This appendix describes the list of Actions supported by the current SNAP specification. Please refer
to request <PerformAction> for more information about how to perform an action via SNAP.

Note: CameraID used below can be obtained by requesting the camera tree via the SNAP request
<GetEntityTree> and it also appears in the standard Netavis Observer client application in Camera
administration next to the camera name in parentheses.

ActionType: SetCameraRecordingState (implemented in Netavis Observer R1.7 or later)

Description: Control recording state of a camera. The functions “Start” and “Stop” do starting and
stopping recording immediately. If the camera is just recording with different parameters
(scheduled or MD triggered) then recording parameters will be changed to those
specified in this request. Recording parameters must be specified as described in the
table below. The property CameraID is mandatory. The properties VideoFormat,
FrameSize, FrameQuality and FrameRate are required if function is “Start”.

Properties:

Name TYPE Description

CameraID Integer Unique camera ID (EntityID)

Function String “Start” or “Stop”

VideoFormat String Valid values:

• “JPEG” – record MJPEG
stream

• “MPEG4” – record MPEG4
stream (Netavis.1.8 or later)

• “MXPEG” – record MxPEG
stream (Netavis 4.3 or later)

• “H264” – record H.264 stream
(Netavis 4.3 or later)

FrameSize String The following values are valid:

• “Large” -- 4CIF (704x576) or full-
size VGA (640x480)

• “Medium” -- CIF (352x288) or
VGA (320x240)

• “Small” -- QCIF (176x144) or VGA
(160x120)

FrameQuality String The following values are valid:

• “High” -- Best quality (lowest
compression)

• “Medium” – Medium quality
(medium compression)

• “Low” -- Lowest quality (highest
compression)

FrameRate Float Frames Per Second value. A
float number between
0.001 and 30.0.

Duration Integer Duration of recording in
seconds. Recording will be

 SNAP XML R1.0

57

stopped automatically after
given seconds. This
property is optional.

